
Perspective: A Principled Framework for Pliable
and Secure Speculation in Operating Systems

Tae Hoon Kim
Carnegie Mellon University

Pittsburgh, PA, USA
taehoon2@cs.cmu.edu

David Rudo
Carnegie Mellon University

Pittsburgh, PA, USA
drudo@cs.cmu.edu

Kaiyang Zhao
Carnegie Mellon University

Pittsburgh, PA, USA
kaiyang2@cs.cmu.edu

Zirui Neil Zhao
University of Illinois Urbana-Champaign

Urbana, IL, USA
ziruiz6@illinois.edu

Dimitrios Skarlatos
Carnegie Mellon University

Pittsburgh, PA, USA
dskarlat@cs.cmu.edu

Abstract—Transient execution attacks present an unprece-
dented threat to computing systems. Protecting the operating
system (OS) is exceptionally challenging because a transient
execution gadget in the OS can potentially leak the entire memory.

In this work, we propose Perspective, a principled framework
for building pliable and secure speculative execution defenses for
the OS. Perspective offers a pliable interface that allows the OS
to communicate its security requirements to hardware defenses,
enabling tailored protection against transient execution attacks
with little performance overhead. The design of Perspective is
driven by a taxonomy of transient execution attacks in the OS
kernel: (i) active transient execution attacks, where the attacker
process exploits its own kernel thread to speculatively execute
a transient execution gadget in the kernel, and (ii) passive
transient execution attacks, where the attacker coerces the victim
process’s kernel thread to execute a transient execution gadget.
Based on the taxonomy, Perspective introduces Data Speculation
Views (DSVs) and Instruction Speculation Views (ISVs), to
mitigate active and passive attacks, respectively. DSVs define the
ownership of kernel data by a given execution context and block
any speculative access to data outside the DSV. ISVs define the set
of kernel functions that can be speculatively executed by a given
execution context. Any transmitter instructions—whose execution
could leak secrets, such as load instructions—that belong to
kernel functions outside the ISVs are blocked from speculative
execution. ISVs open up new opportunities of (i) swiftly patching
gadgets in the OS, (ii) reducing the surface of passive attacks,
and (iii) speeding up the process of auditing transient execution
gadgets in the OS.

We build Perspective’s software components in the Linux
kernel and model the hardware components in gem5. We eval-
uate the security and performance of Perspective on a set of
microbenchmarks and datacenter applications. Perspective has
an execution overhead over an unprotected kernel of only 3.5%
on microbenchmarks and only 1.2% on datacenter applications.

Index Terms—Operating Systems, Security, Speculative Exe-
cution, Virtualization

I. INTRODUCTION

Transient execution attacks [58], [59], [68], [68], [85],
[105], [120], [120], [126], [133], [138], [142], [144], [147],

This work was funded in part by NSF grants CNS-2239311, CNS-2217016,
a CMU CyLab Faculty Award, and a Meta Faculty Award.

[148] shattered the security isolation wall of modern proces-
sors. These attacks take advantage of transient instructions
that may execute but not subsequently commit. An adversary
can leverage speculative execution gadgets to leak sensitive
data over microarchitectural covert channels [106], [154].
Such gadgets can leak any information within the address
space in which they reside. Precariously, transient execution
gadgets in the kernel can potentially leak all memory. This
is because operating systems (OS), such as Linux, always
map all physical frames [97] in the kernel address space for
performance.

The unabating increase of the OS code base further ex-
acerbates the threat of transient execution attacks. Manual
code reviews by developers and security auditing become
tremendously difficult, if not impossible. Case in point, the
Linux kernel has reached 23 MLOC in 2023 [1]. Inevitably,
this vast attack surface has led to a continuous stream of
speculative execution CVEs [6], [7], [9]–[18], [20]–[23], [23]–
[25], [32]–[40], [44].

A large body of work has focused on mitigating speculative
execution vulnerabilities through software or hardware defense
schemes. On the one hand, deployed software solutions are
“spot mitigations” that provide limited coverage and often
miss corner cases, requiring repeated efforts to resolve [6],
[15], [17], [28], [42]. Furthermore, software approaches such
as page table isolation [49], [55], [72], [79], [127], [152],
Retpolines [139], LFENCEs [50], and even more heavyweight
solutions such as core scheduling [101], cache flushing [102],
and SLH [60] can have a significant impact on performance.
For example, SLH shows a system call overhead of 65% on
average [84]. Beyond performance, the deployment of software
mitigations requires a lengthy procedure that involves kernel
patches and even microcode updates. Given the requirement to
manually add protection measures for identified gadgets [96],
a principled way of mitigating transient execution attacks is
needed.

On the other hand, several hardware solutions have been
proposed [47], [61], [62], [71], [80], [83], [91], [95], [107],

[109], [117], [123], [124], [136], [137], [146], [153], [155],
[156], [159]. Predominantly, hardware defenses aim to be soft-
ware transparent and backward compatible. However, without
software information, hardware defenses are rigid, have to be
always enabled, may miss corner cases, and may severely
impact performance. Even some of the best-performing so-
lutions [47], [155], [159] require intrusive changes in the core
pipeline and especially in the cache hierarchy. Unfortunately,
such solutions are often impractical for adoption due to
the significant verification costs inherited by their intricate
interactions with the microarchitecture.

A. This Paper: Pliable Secure OS Speculation

In this paper, we propose Perspective, a principled frame-
work for building efficient, lightweight speculative execution
defenses for the OS kernel. Perspective offers a pliable in-
terface between software and hardware that allows the OS to
communicate its security requirements to the underlying hard-
ware protection mechanisms. This interface opens up a new
design space of tailored protection—the hardware protection
mechanism selectively protects vulnerable instructions based
on the security goals and the landscape of transient execution
vulnerabilities, minimizing unnecessary protection. As a result,
the hardware protection mechanism can be as simple as
blocking speculative execution of vulnerable instructions while
still attaining a low execution overhead.

The design of Perspective is driven by a taxonomy of
transient execution attacks in the OS kernel. In this taxonomy,
we identify two attack scenarios in the kernel: (i) active
transient execution attacks, where the attacker process exploits
its own kernel thread to speculatively execute a transient exe-
cution gadget in the kernel and (ii) passive transient execution
attacks, where the attacker coerces the victim process’s kernel
thread to speculatively execute a kernel function containing
transient execution gadgets. This taxonomy is agnostic to
attack variants, such as Spectre v1 [85], Spectre v2 [85],
Spectre RSB [87], [110], Retbleed [148], BHI [54], and others.

Based on our taxonomy, Perspective introduces two types
of speculation views, Data Speculation Views (DSVs) and
Instruction Speculation Views (ISVs), to mitigate active and
passive attacks, respectively. A speculation view can be asso-
ciated with an execution context, e.g., a process or a container.

The intuition of DSVs is that in an active attack, the attacker
process exploits its kernel thread to speculatively access and
leak the data owned by other victim processes or the kernel.
Therefore, a DSV defines the set of data that a given execution
context owns. Based on the DSV, the hardware mechanism can
block any speculative access to data that are outside the DSV
of the current execution context, as such access would violate
data ownership. As a result, DSVs eliminate active attacks. In
this paper, we propose one possible approach for associating
the data to the execution context that allocates them.

However, DSVs do not mitigate passive attacks. This is
because in passive attacks, the victim process’s kernel thread
speculatively executes kernel functions containing transient
execution gadgets to access and leak its own data, which

does not violate data ownership. Therefore, to thwart passive
attacks, Perspective proposes the ISV interface. ISVs enable
an execution context to define the set of kernel functions
that are trusted by the context. Any transmitter instructions
that belong to kernel functions outside the ISVs are blocked
from speculative execution. In this paper, we propose several
approaches to generate ISVs by marrying concepts from
system call interposition [3], [5], [66], [76], [81], [94], [132].

The security benefits of ISVs are manyfold. First, ISVs
provide an interface to swiftly mitigate unforeseen vulnerable
kernel functions that contain transient execution gadgets. This
benefit is vital given the continuous discovery of speculative
execution vulnerabilities in kernel functions. Second, a victim
program can exclude a large portion of kernel functions that
are not used or infrequently used from its ISV. This use case
is akin to kernel debloating [89], [90], reducing the victim’s
surface of passive attacks. Finally, since ISVs provide the
guarantee that kernel functions outside ISVs are blocked from
speculative execution, one only needs to audit kernel functions
within ISVs for transient execution gadgets. This approach
speeds up the auditing process, as ISVs often include only a
small fraction of the whole OS kernel functions. Moreover,
any gadgets discovered during auditing can be excluded from
ISVs, enhancing security.

We build Perspective’s software components in the Linux
kernel and model the hardware components in gem5. We
evaluate the security and performance of Perspective based
on a set of microbenchmarks and datacenter applications.
Compared to unmodified Linux running on unsafe hardware,
Perspective’s DSVs eliminate active speculative execution
attacks. Furthermore, ISVs reduce speculatively accessible
functions by 95.1%. We then leverage the reduced search space
provided by ISVs to speedup a state-of-the-art speculative
execution scanner between 1.14-2.23× and 1.57× on average,
and further block all identified gadgets. Finally, Perspective
has an execution overhead over an unprotected kernel of 3.5%
on microbenchmarks and 1.2% on datacenter applications.

We make the following contributions:

• A taxonomy of transient execution attacks and CVEs in
the kernel that generalizes transient execution attacks into
active and passive attacks. The taxonomy is agnostic to
specific attack variants such as Spectre v1 and v2.

• Perspective introduces a principled framework for pliable
and secure speculative execution in the kernel through
two types of speculation views, data speculation views
(DSVs) and instruction speculation views (ISVs), which
protect against active and passive attacks, respectively.

• We present several design points on top of Perspective.
These design points are based on tracking data ownership
through allocation for DSVs and system call interposition
for ISVs.

• A comprehensive security and performance evaluation
of Perspective using microbenchmarks and datacenter
applications.

II. BACKGROUND

In this section, we provide a brief overview of transient
execution attacks and operating system security.

A. Transient Execution Attacks

Speculative execution is a fundamental performance op-
timization of high-performance processors. With speculative
execution, some instructions may execute speculatively but do
not commit due to pipeline squashes. We refer to the execution
of instructions that do not commit as transient execution.
Transient execution can leave sensitive information in mi-
croarchitectural states, such as caches, which can be recovered
by attackers through microarchitectural covert channels [48],
[106], [154]. This class of attacks is known as transient
execution attacks [58], [85], [105]. In this paper, we focus
on Spectre-type attacks [58] that exploit transient execution
caused by various prediction mechanisms in the pipeline,
such as control-flow misprediction or memory-dependency
misprediction. Such attacks exploit fundamental performance
optimizations, making them difficult to defend against.

Spectre v1. The most notable variant of Specter-type at-
tacks is Spectre v1 [85], which exploits conditional branch
mispredictions. Listing 1 shows a Spectre v1 code snippet.
The snippet takes an index variable idx as input, which is
controlled by the user. The index is then tested against the
size of array1 to prevent out-of-bound accesses (Line 1). If
the check passes, the code loads an element from array1
(Line 2), which is in turn used as an index to access array2
(Line 3).

1 if (idx < array1_size) { // mispredicted
2 u8 s = array1[idx]; // access
3 u8 y = array2[s*4096]; // transmit
4 }

Listing 1. Spectre v1 [85].

To carry out a Spectre v1 attack, the attacker first mis-
trains the branch responsible for performing the bounds check
(Line 1). Then, the attacker re-invokes the code snippet
with an out-of-bound index. The misstrained branch is taken
and transiently executes the out-of-bound memory access
on Line 2, potentially reading a secret value and leaking
it through a cache-based covert channel [154]. This attack
process can be generalized into two steps: (i) transiently access
the secret (Line 2); and (ii) transmit the secret through a covert
channel (Line 3). We refer to a code snippet that performs a
combination of these two steps as a transient execution gadget.

Spectre v2 & Spectre RSB. Speculative control-flow hijack-
ing attacks, coerce the victim to transiently execute unintended
code paths by exploiting indirect branch and return address
prediction, potentially leading to unauthorized data accesses.
For example, the attacker can poison a branch target buffer
(BTB) entry of a victim indirect branch and point the jump
target to a transient execution gadget. This variant is known
as Spectre v2 [85]. Similarly, in Spectre RSB [87], [110]
the attacker poisons a return stack buffer (RSB) entry to
speculatively hijack the control flow of a victim return.

Kernel

Userspace

Monitor

syscall()

Security
Contract

Process Online Offline

App

12

3

4

Fig. 1. System call interposition overview.

B. Operating System Security Isolation

In contemporary operating systems, such as Linux, vir-
tual memory provides memory isolation between userspace
processes and the kernel. To achieve high performance and
avoid the high cost of context switches, the kernel is de-
signed as a monolithic address space. A monolithic address
space enables fast communication between different kernel
components as memory can be directly accessed by any
component without the heavy cost of context switching and
inter-process communication. Furthermore, the kernel includes
a direct map [97] area that maps all physical page frames in
the system. Consequently, the kernel does not have to set up
and tear down mappings when it needs to copy data to and
from userspace and can easily obtain physical addresses.

System Call Interposition. System call interposition is
a powerful security technique that reduces the number of
systems calls available to userspace processes. Such tech-
niques [2]–[4], [66], [116] have been widely adopted by
internet browsers [78], cloud deployments including Amazon’s
Firecracker [46], [52], Google’s gVisor [69], and container
technologies [65], [88], [111], [130], [140]. When execution
transitions into the kernel, a security monitor inspects the
system call and decides if its execution should proceed.
Figure 1 shows an overview of system call interposition.
First, in step 1 , the application binary is analyzed to create
a deny/allow system call list. This can be performed either
statically through binary analysis or dynamically with tracing.
During deployment in step 2 , the list defines the security
contract between the userspace process and the kernel. Every
time a process performs a system call, shown in step 3 , the
security monitor intercepts it. Based on the security contract,
the monitor decides to block or allow it in step 4 .

III. THREAT MODEL

Perspective’s threat model considers environments where
mutually distrusting parties share hardware resources, such as
multi-tenant datacenters. We assume an unprivileged adver-
sary who can trigger transient kernel execution and illegally
access the victim’s secret data. For example, the attacker
can carefully prime microarchitectural structures, craft system
call arguments, and exfiltrate the secret through transient
execution such as Spectre v1 [85], Spectre v2 [85], Spectre
RSB [87], [110], Retbleed [148], BHI [54], and so on. The
goal of Perspective is to block transient execution attacks
in the OS kernel that enable information leakage between
different userspace processes or between the kernel and the
userspace. Additionally, we assume a strong adversary that
can exploit any side channel. Perspective enforces the Spectre

if (r1 < arr1_size)
s = arr1[r1]; // access
… = arr2[s*4096]; // transmit

Kernel

Userspace 1

2

3

Transient execution
Non-transient execution

Secretv

Kernel Code Kernel Data

Procv
Victim

Proca
Attacker

Attacker

1
2
3

Fig. 2. Example active transient execution attack in the OS. Input r1 is
controlled by the attacker.

threat model [153]. We do not consider attacks such as Melt-
down [105] and MDS [141], as they are fixed in the newest
processors. Non-transient side channels e.g., cache timing
side-channels and attacks that leak non-speculatively accessed
data are out of scope. Attacks such as Rowhammer [82],
electromagnetic attack [128], and power side-channels [104]
are out of scope.

IV. MOTIVATION & SCOPE

A. A Taxonomy of Transient Execution Attacks in the OS

Operating systems, including Linux, utilize a monolithic
address space for high performance. For example, Linux uses
a direct map [97] that maps all physical page frames in the
system. However, from a security standpoint, a monolithic
OS is more susceptible to transient execution attacks. This
is because an attacker can circumvent protections, such as
bounds checks, to speculatively access and leak all system
memory from the OS address space. To better comprehend the
risks, we present a taxonomy of transient execution attacks
in the OS in two main scenarios. Note that this taxonomy
is agnostic to variants of transient execution attacks, such as
Spectre v1 [85], Spectre v2 [85], Spectre RSB [87], [110],
Retbleed [148], BHI [54], and others.

Active Transient Execution Attacks. In an active transient
execution attack, unauthorized memory accesses and subse-
quent disclosures are performed from the kernel thread of
the attacker’s process. Consider the example of Figure 2. The
upper half shows two userspace processes, Proca and Procv ,
representing the attacker and the victim. The goal of Proca is
to steal private data owned by Procv , denoted by Secretv . The
lower half represents the monolithic kernel, which is divided
into two parts: (i) the kernel code, containing a transient
execution gadget located on the path of a system call, with r1
being an argument of the system call; and (ii) the kernel data,
encompassing the entire system memory, including Secretv
owned by Procv .

In the example of Figure 2, similar to the generic Spectre
v1 attack discussed in Section II-A, Proca first mistrains the
branch responsible for performing the bounds check (Line 1
in Figure 2). This can be achieved by repeatedly making the
system call with an r1 value that passes the bounds check,
thereby biasing the branch toward being taken. Subsequently,
Proca initiates a system call with an out-of-bound r1 value
(1), enters the kernel space, and speculatively executes the
transient execution gadget. Due to previous mistraining and
the out-of-bound index r1, the gadget speculatively accesses

r1 = &secret_v;
…
ret;

Function 1

Userspace 1

2

Transient execution
Non-transient execution

Secretv

Kernel Data

Procv
Victim

Proca
Attacker

s = load r1; // access
… = arr2[s*4096]; // transmitFunction 2

4
Attacker

3Hijack

Fig. 3. Example passive transient execution attack in the OS.

Secretv (2), which is then transmitted to the attacker through
a cache-based covert channel (3).

Since active attacks exploit the monolithic nature of kernel
data, one of Perspective’s defense mechanisms, discussed in
Section V, is to identify kernel data ownership by different
contexts—e.g., different processes or containers. By blocking
speculative memory accesses that violate ownership, Perspec-
tive effectively eradicates active transient execution attacks.

Passive Transient Execution Attacks. In a passive transient
execution attack, the victim speculatively executes both access
to the secret and transmission of the secret. This scenario
is analogous to “cross-domain transient execution attacks” in
Intel’s refined speculative execution terminology [75]. Since
the speculative access to the secret is initiated by the victim,
the access does not violate data ownership. Consequently,
mechanisms that block speculative accesses violating data
ownership are ineffective against passive attacks.

Figure 3 illustrates an example of passive attacks. The
victim-issued system call executes Function 1 (1), which
loads a reference of Secretv to r1. Since function 1 does
not access Secretv , its execution does not leak the secret.
However, when the victim returns from Function 1, the at-
tacker can employ techniques such as Spectre v2 [85] and
Spectre RSB [87], [110] to hijack the victim’s speculative
control flow to any kernel function, such as Function 2, which
contains a transient execution gadget (2). This step serves two
purposes: first, it coerces the victim to speculatively execute a
transient execution gadget; second, it creates a speculative type
confusion [84], causing the value in r1 prior to the hijacking,
which is a memory reference to Secretv , to be used out-of-
context by the memory access in Function 2. Consequently,
the hijacked execution speculatively accesses Secretv (3) and
transmits the secret through a covert channel (4).

Compared to active attacks, passive attacks are challenging
to orchestrate, since the attacker has no control over the
victim’s system calls and their arguments. As a result, passive
attacks are generally assisted by hijacking the victim’s specu-
lative control flow to a kernel function that contains transient
execution gadgets [75], as exemplified by Step 2 in Figure 3.

Since passive attacks largely exploit the monolithic nature
of kernel code, the second defense mechanism of Perspective,
which will be discussed in Section V-C, is to limit the victim’s
speculative control flow to a small subset of kernel functions
and drastically reduce the attack surface for passive attacks.

TABLE I
A COLLECTION OF SPECULATIVE EXECUTION-RELATED VULNERABILITIES TARGETING THE LINUX KERNEL.

Attack Primitives Insufficient
Mitigation

CVEs and
Academic Papers Description Origin of Vulnerability

1
Unauthorized speculative
data access (Spectre v1)

n/a [40] Array index is not validated Xilinx USB Driver
2 Misuse [12] Reintroduced Spectre vulnerabilities in backporting ptrace
3 n/a [22], [36]–[39] Out-of-bounds speculation on pointer arithmetic eBPF verifier
4 n/a [23], [84] Speculative type confusion [84] eBPF verifier
5

Speculative control-flow
hijacking (Spectre v2,

Spectre RSB, and more)

Hardware [26], [27], [29], [54] Branch history injection [54] Indirect calls and jumps
6 Software [15] LFENCE/JMP is insufficient on AMD Indirect calls and jumps
7 Software [30], [31], [149] Retbleed [149] Retpoline [139]
8 Misuse [41] Missing retpolines or IBPB KVM
9 Misuse [13], [17], [28], [43] Improper use of hardware mitigations Indirect calls and jumps

B. Studying of Transient Execution Attacks in the Kernel

To gain a deeper understanding of the threats posed by
transient execution attacks, we studied transient execution
vulnerabilities in the Linux kernel. Our study focuses on two
types of attack primitives that aim to (1) enable unauthorized
speculative data access like Spectre v1; and (2) enable hijack-
ing of the victim’s speculative control flow such as Spectre
v2 [85], Spectre RSB [87], [110], Retbleed [148], BHI [54].
These attack primitives are the basic building blocks of both
active and passive transient execution attacks in the kernel.
Moreover, these primitives have not yet been fully mitigated
or are attacks whose mitigations introduce overhead.

Table I summarizes our findings. The first column of Table I
illustrates the impact of the vulnerability, falling into two main
categories: (i) enabling unauthorized speculative data access
(Spectre v1), or (ii) enabling speculative control-flow hijacking
(Spectre v2 and Spectre RSB). The second column indicates
whether the vulnerability results from insufficient mitigations.
If so, it further specifies whether it is caused by insufficient
hardware or software mitigations or misused mitigations. The
third column lists the relevant CVEs and academic papers. Fi-
nally, the fourth and fifth columns provide the vulnerabilities’
descriptions and origins in the Linux kernel.

Unauthorized speculative data access (Spectre v1). Rows
1 to 4 list vulnerabilities that enable unauthorized speculative
data access through Spectre v1-like attacks. From top to bot-
tom, Row 1 represents CVE-2022-27223 [40], which identifies
a transient execution gadget in the Xilinx USB peripheral
driver with an unprotected index that allows transient outbound
accesses. Due to the vast size of the Linux kernel, such
vulnerabilities are often deeply buried within infrequently used
modules, making it challenging to detect.

Then, Row 2 represents a vulnerability [12] that reintro-
duces Spectre vulnerabilities to ptrace when backporting
Spectre mitigations to earlier Linux versions. This vulnerabil-
ity highlights the possibility of accidentally creating transient
execution gadgets in the Linux kernel.

Lastly, Rows 3 and 4 list a series of vulnerabilities in the
eBPF program verifier. By exploiting these vulnerabilities,
an attacker can inject transient execution gadgets into the
Linux kernel by loading malicious eBPF programs, thereby
achieving unauthorized speculative data access. This category
of vulnerabilities is mitigated by fixing the verification logic

of the eBPF program and disallowing unprivileged users to
load eBPF programs by default [135].

Speculative control-flow hijacking (Spectre v2, Spectre
RSB, and more). Rows 5 to 9 list vulnerabilities that
enable speculative control-flow hijacking through Spectre v2-
or RSB-like attacks. These vulnerabilities are caused by inad-
equate mitigations. Row 5 shows the Branch History Injection
(BHI) attack [54] that bypasses hardware mitigations [74],
which replace software mitigations like Retpoline [139]. Rows
6 and 7 list vulnerabilities that originate from insufficient
software mitigations. Row 6 shows a vulnerability caused
by the false belief that inserting an lfence before indirect
jumps can defend against Spectre v2 on AMD processors.
However, there is a race condition where an lfence is
ineffective. Row 7 represents the Retbleed attack [149] that
targets Retpoline, the most widely used software defense
against Spectre v2. Lastly, Rows 8 and 9 list a series of
misuses of mitigations. These vulnerabilities arise because of
the numerous hardware and software defenses against Spectre
v2 on different CPUs that lead to confusion about which
defense should be enabled.

Takeaways. Despite the tremendous efforts of kernel de-
velopers and hardware vendors, numerous transient execution
vulnerabilities continue to arise. In our study, we find that
transient execution gadgets are often deeply buried within
infrequently used code, hindering their detection. Furthermore,
active kernel development can inadvertently reintroduce new
vulnerabilities. Adding to the issue, the OS defenses against
speculative control-flow hijacking often fall short due to in-
sufficient or misuse of mitigations. As a result, an attacker can
directly exploit, or coerce the victim to exploit, an unpatched
transient execution gadget deep within the kernel. This enables
the attacker to perform active or passive transient execution
attacks to steal secrets. These observations emphasize the
necessity of blocking speculative memory accesses that violate
data ownership and limiting the set of functions that can be
speculatively executed by a context to a small subset of all
kernel functions.

V. PERSPECTIVE DESIGN

Perspective introduces a principled framework for building
pliable and secure speculative execution defenses for the OS
Perspective offers a pliable interface that allows the OS to

Procv

Kernel
Userspace

Proca
Transient

Non-transient

Kernel Data

A
B C

F
D

E
Kernel Code

ISV
DSV

Fig. 4. An example of data speculation views (DSVs) and instruction
speculation views (ISVs).

communicate its security requirements to underlying hardware
protection mechanisms. At a high level, Perspective consists
of two types of Speculation Views, Data Speculation Views
(DSVs) and Instruction Speculation Views (ISVs), which
aim to thwart active and passive transient execution attacks
in the kernel as presented by our taxonomy of attacks in
Section IV-A. Perspective’s design is rooted in this taxonomy,
instead of attack variants, and hence it can mitigate all variants.

A. The Perspective Framework

Data Speculation Views (DSVs). In active transient execu-
tion attacks, unauthorized memory accesses and subsequent
disclosures are performed from the kernel thread of the at-
tacker’s process to leak data owned by other victim processes
or the kernel. The Perspective framework mitigates this class
of attacks by isolating the kernel state based on ownership.
Specifically, Perspective associates each process with a DSV.
A DSV defines the set of data that a given execution context
owns. Any speculative access to data outside the DSV is
protected. For simplicity, we assume a simple but aggressive
protection mechanism that blocks the speculative memory
access until it becomes non-speculative. As the majority of
accesses during kernel execution do not violate ownership,
DSVs impose very low execution overhead even if the pro-
tection mechanism is as aggressive as blocking speculative
accesses. In Section V-B, we discuss one potential DSV design
by defining ownership based on memory allocations.

Figure 4 shows an example of DSVs. The userspace pro-
cesses live on the upper side of the figure, while the monolithic
kernel space contains the kernel code and data. The kernel
code is represented as a function call graph, where each circle
represents a kernel function. DSVs are depicted in Figure 4
as a gray pattern with a colored line that represents the owner
process. For example, Figure 4 shows that during the execution
of Proca, the speculative access of the function C is blocked
as it tries to access data that belong to Procv’s DSV. Similarly,
a process is only allowed to transiently access data within its
own DSV, e.g., the transient access from node F .

Instruction Speculation Views (ISV). In passive transient
execution attacks, both the access to and the transmission of
the secret are speculatively carried out by the victim’s kernel
thread. To thwart passive attacks, Perspective proposes the
ISV interface that defines the set of kernel code that can
be speculatively executed by a given execution context. To
simplify the discussion, we assume that ISVs are defined at a

kernel-function granularity, however, in practice ISV protec-
tion is applied at the instruction granularity. Any transmitter
instructions—whose execution could leak secrets, such as load
instructions—that belong to kernel functions outside the ISVs
are protected (e.g., blocked from speculative execution). The
ISV becomes active when a process transitions from userspace
into the kernel, e.g., due to a system call. Figure 4 illustrates
the ISV of Proca using the call graph, where the kernel
functions that belong to the ISV are enclosed in the orange
line. For example, consider the control-flow edge from node
A to node B . Because node B is outside the defined ISV, the
program cannot speculatively execute transmitter instructions
from node B . Section V-C introduces multiple possible ways
to generate an ISV for a given victim program.

The security benefits of ISVs are manyfold. First, ISVs
provide an interface to swiftly mitigate unforeseen vulnerable
kernel functions that contain transient execution gadgets. This
benefit is vital given the continuous discovery of transient
execution vulnerabilities in kernel functions. Second, a victim
program can exclude a large portion of kernel functions that
are not used or infrequently used from its ISV. This use
case is akin to kernel de-bloating [89], [90], reducing the
victim’s surface of passive attacks. Finally, since ISVs provide
the guarantee that kernel functions outside ISVs are blocked
from speculative execution, one only needs to audit kernel
functions within ISVs for transient execution gadgets. To
this end, we augment with Perspective’s ISVs a state-of-the-
art speculative execution gadget scanner [77] to dramatically
reduce the scanner’s gadget search time and produce strict
ISVs that block all identified gadgets. Note that an attacker
can hijack the victim’s speculative control flow to the middle
of a function that is within the ISV, Perspective builds on
top of control flow integrity (CFI) techniques [86] to defend
against these types of attacks.

Outlook. The interfaces of DSVs and ISVs open up a
new design space of protection schemes against transient
execution attacks. By changing the approaches of defining data
ownership or generating ISVs, one can create various schemes
tailored to their security requirements and performance goals.
In the following sections, we present several design points for
DSVs and ISVs.

B. Defining Data Ownership for DSVs Through Allocations

The Perspective framework has many potential design points
of DSVs by varying the definition of data ownership. We
propose defining data ownership for DSVs based on the con-
text of execution that the kernel operates on behalf of during
memory allocation. Our insight is that allocations provide
a strict security guarantee as they separate resources based
on contexts. This approach simplifies Perspective’s integration
with real-world operating systems as allocations are commonly
tracked for resource control.

Implicit and Explicit Memory Allocations. To guide our
design, we identify two main types of kernel allocations,
explicit and implicit allocations. We define as explicit all

KernelUserspace

Explicit
Allocation

mmap()

alloc_page()
poll()

1 2
3VA

4

kmalloc()

5
6#FD

Implicit
Allocation

Ti
m
e

DSV

Kernel
Data

Fig. 5. Tracking explicit and implicit allocations.

the allocations where the kernel allocates resources explicitly
requested by userspace, e.g., memory, sockets, or files. The
upper part of Figure 5 shows an example of an explicit
allocation. Arrows represent the transitions between userspace
and the kernel. Time traverses vertically from top to bottom.
In step 1 , the userspace process executes the mmap() system
call.1 Then in step 2 , the kernel allocates available pages on
behalf of the process. During this time, Perspective assigns
the allocated pages to the DSV of the process. Finally, in
step 3 the kernel returns the virtual address (VA) to userspace.
Similarly, in the case of a page fault, the allocated page will
be associated to the DSV of the faulting process. In the case
of munmap(), Perspective removes pages from the DSV.

Implicit allocations are usually allocated by the kernel on
behalf of the process for bookkeeping and metadata manage-
ment. An implicit allocation example is shown in the lower
part of Figure 5. The userspace process executes in step 4
the poll() system call. Within the system call, the kernel
may allocate memory, e.g., through kmalloc(), to store
metadata about the file descriptors being polled. This is shown
in step 5 . Such allocations belong to the process, and hence
Perspective protects them by adding them to the process DSV.
Finally, in step 6 , the return value of the number of file
descriptors with events is returned to the userspace.

In practice, most implicit allocations are handled through
slab allocations, e.g., through interfaces such as kmalloc()
in Linux. The goal of the slab allocator is to maximize
memory utilization and therefore tries to pack the allocations
together [57], [100]. As a result, data belonging to mutually
distrusting processes may get allocated even within the same
cache line. For example, Linux slab allocations can be as small
as 8 bytes [98], [99], much smaller than the contemporary
cache line sizes of 64 bytes. However, this approach introduces
a major challenge to security isolation. This is because Per-
spective would need to track data ownership at a granularity
as small as 8 bytes, leading to high bookkeeping overhead.
Perspective resolves implicit allocations by designing a secure
slab allocator that isolates different execution contexts. We
further discuss our implementation in Section VI-A.

C. Generating ISVs with System Call Interposition

We leverage the principled security guarantees of ISVs pro-
vided by the Perspective framework to propose a methodology
on how to realize ISVs. Our proposal marries concepts from
system call interposition (Section II-B) used for application

1We assume the MAP POPULATE flag is set for simplicity.

ISV
Reachable

Transient
FunctionCall Edge

A

B

C

ED

G

F

(a)

Syscall A

B

C

E
D

G

F

(b)

Syscall

Fig. 6. Perspective’s (a) static, and (b) dynamic construction of ISVs.

sandboxing with speculative execution. Specifically, Perspec-
tive introduces two techniques based on static and dynamic
system call interposition to define personalized ISVs for each
context.

Similarly to how system call interposition techniques define
an allow list of system calls for an application, we identify
potential entry functions to the kernel. Then, we use static or
dynamic analysis to find the set of kernel functions used by
these entry functions. These functions are trusted and form the
basis of the ISV of the application.

Our approach avoids one of the common pitfalls of system
call interposition. In particular, in conventional system call
interposition enforcement, blocking a system call can have
detrimental effects on applications as they may lead to irrecov-
erable errors and crashes. As a result, the system call allow list
ends up being overly permissive to avoid usability problems.
Instead, Perspective’s insight is that even if kernel functions
are excluded from the ISV, execution can continue non-
speculatively. As a result, Perspective’s ISVs can dramatically
reduce the barrier for adoption.

Static ISVs. One approach to define ISVs is by statically
analyzing the application binary. The first step is to identify
the system calls that may be used by a given program. Next,
Perspective statically analyzes the kernel binary to identify
the set of functions that could be invoked during each system
call. Then, it combines the set of system calls with the set of
functions that could be invoked by each system call to form a
static ISV at the granularity of functions for the application.

Figure 6(a) shows an example of generating ISV with
static analysis. The kernel code is represented as a call graph
composed of function nodes, where the node A is the system
call entry point. A call edge, shown as a solid line arrow,
represents calling relations between functions. From the entry
point A , the static analysis recursively follows the call edge
to traverse and record all kernel functions that might be called
during the execution of the system call. These functions form
the static ISV, which is marked as a gray cloud that engulfs a
subset of function nodes.

As with any technique that relies on an accurate call graph,
indirect jumps pose a major challenge because they are hard
to reason with statically, making it hard to identify functions
are reachable via only indirect jumps. Figure 6(a) shows
reachable nodes connected with a dotted blue arrow. Such
reachable nodes are not included in the static ISV. Therefore,
any speculative indirect jumps to these reachable nodes are
blocked from speculative execution even if these reachable
nodes are safe to speculatively execute, incurring unnecessary
overhead. Shown in Figure 6(a) with an orange dotted line, a

transient transition from node A to C is allowed in the static
ISV but not from A to B , as the latter is a reachable node.

Dynamic ISVs. While static ISVs present a viable solution,
to further reduce the attack surface of the kernel, Perspective
introduces a dynamic technique to define ISVs. Specifically,
Perspective leverages kernel-level process tracing to identify
the set of actively used system calls and kernel function
paths. Based on this information, Perspective generates a
personalized dynamic ISV consisting of the kernel functions
that are traced. Figure 6(b) shows the same high-level call
graph but depicts a dynamic ISV that now includes a reduced
set of nodes compared to the static ISV.

Compared to static ISVs, there are two benefits of using
dynamic ISVs. First, dynamic ISVs can further reduce the
attack surface over static ISVs by including only functions
that are actually used by the application, not the functions
that could be used. Second, dynamic ISVs generally offer
better performance. This is because dynamic ISVs capture
functions that are reachable via only indirect jumps, which
otherwise would not be included in a static ISV. As shown
in the example, in contrast to the static ISV, node A can
transiently reach node B , potentially improving performance.
In addition, node G is now excluded from the ISV, improving
security.

D. Discussion of ISVs

Dynamically Reconfigurable ISVs. An ISV provides an
interface for dynamically configurable security at runtime.
While an ISV is built offline and later provided to the OS
at application startup, ISVs can become stricter later on.
Specifically, during the runtime of the application, one can
shrink the ISVs as certain system calls or function paths are
no longer needed, reducing the attack surface. Furthermore,
in a scenario where new vulnerabilities are found in kernel
functions, the ISV can be adjusted to exclude affected func-
tions, effectively mitigating new vulnerabilities without kernel
patches and potentially expensive server downtime. Finally,
it enables system administrators to install ISVs that could be
applied to all or selected applications.

Accelerating Security Auditing with ISVs. Perspective’s
ISVs unlock the potential to efficiently identify gadgets using
security auditing techniques such as static analysis, taint track-
ing, and fuzzing [73], [77], [118]. This is because functions ex-
cluded from ISVs cannot speculative execute, the auditing only
needs to examine functions within ISVs, drastically reduce the
search space We demonstrate this point in Section VIII with
Kasper [77], a state-of-the-art speculative execution gadget
scanner that uses taint analysis and fuzzing. This approach
significantly improves the overall gadget discovery rate, as we
demonstrate in Section VIII.

Enhancing ISVs with Auditing. Perspective can leverage
the accelerated security auditing to further enhance the se-
curity of ISVs. Specifically, after Perspective produces ISVs
through system call interposition (Section V-C), it can use
them to bound the search space of kernel auditing. Perspective

then uses the results of the ISV auditing to exclude all the
vulnerable functions identified by the audit from the ISVs.
We describe Perspective’s implementation in Section VI and
present the results in Section VIII.

VI. PERSPECTIVE IMPLEMENTATION

A. Operating System Support

The design principles of Perspective are general and ap-
plicable to most operating systems. For our implementation
prototype, we build Perspective on top of the Linux kernel
and control groups (cgroups [103]) for resource tracking.
However, alternative implementations based on processes are
also simple to implement, allowing Perspective to be appli-
cable to most commercial operating systems, including Mac
OS X, FreeBSD, and Windows. Our implementation includes
about 400 LOC of changes for DSV management and the
secure slab allocator. We further modify the kernel (about 400
LOC) to expose speculation view metadata to the simulator.
To generate ISVs on top of radare2 [119] we require about
150 LOC. Finally, our modifications to Kasper [77] are about
150 LOC. Next, we discuss the implementation of instruction
and data speculation views of Perspective.

Data speculation views with cgroups. The primary re-
quirement to support DSVs in the kernel is the ability to
track the ownership of resources. In Perspective we use
cgroups [103] to associate allocations with a DSV per
container. For kernel threads, each of them belongs to dis-
tinct DSVs to improve isolation. The kernel buddy allocator
(through alloc_pages()) obtains the cgroup ID of the
current process context during allocations and associates the
allocated physical frames to a DSV for the corresponding page
in the direct map. As a result, Perspective associates each page
in the direct map with appropriate DSVs fully protecting the
direct map. This approach is sufficient for mapping a frame
into the userspace (e.g., in the page fault handler) or using a
frame solely in the kernel. When a physical frame is freed,
Perspective disassociates it from its DSV.

A Secure Slab Allocator. As discussed in Section V, slab al-
locations are particularly challenging in current OS designs as
they pack memory across mutually distrusting processes [98],
[99]. To address this challenge Perspective introduces a secure
slab allocator that isolates different contexts of execution at
the granularity of pages. Specifically, for each slab serving a
particular object size or type, Perspective maintains separate
lists of physical pages to store objects for each cgroup,
eliminating collocation.

Resolving Unknown Allocations. Perspective tracks resource
ownership through the page and the slab allocator, but on
rare occasions memory used by the kernel does not use
these two primary interfaces. We classify such allocations as
unknown. By default, unknown memory does not belong to
a DSV, hence Perspective conservatively blocks speculation.
We identify three main sources of unknown allocations. First,
unknown allocations may originate from global variables de-
fined in the kernel code. For example, some are structs of

Virtual
Address Space

Code Page

O
ffs

et

f3f2

Instruction VA

ISV
Cache

f1

ISV Page
a3a2a1

a3a2a1

Hit
Miss

Offset

+

To TLBTo pipeline

(a) (b)

Fig. 7. Perspective’s (a) ISV VA layout and (b) ISV hardware cache.

function pointers describing operations that can be performed
on a file. When possible Perspective redesigns the allocation
mechanisms to replicate such structs dynamically per process.
Second, some allocations are per-cpu variables allocated at
boot-time. Finally, the per-process kernel stack is allocated
from vmalloc during fork. Perspective tracks it and adds it
to the process DSV.
Generating instruction speculation views. To generate ISVs,
we have designed a static and dynamic analysis framework.
Specifically, for static ISVs we identify system call paths used
by a given binary by extending Radare2 [119], a state-of-
the-art binary analysis tool. Second, we identify the function
path for a given system call. Our framework combines the
two to statically define ISVs at the instruction granularity
per program. For dynamic analysis, we rely on the tracing
subsystem of Linux to dynamically identify the system calls
and their function paths in the kernel on a per-process and
container basis. The result is a dynamic ISV profile.
Improving Kernel Auditing. Perspective can significantly
improve the performance of kernel auditing by drastically
reducing the search space only within ISVs. There are various
techniques to identify gadgets using static analysis, taint
tracking, and fuzzing [73], [77], [118]. We select Kasper [77]
for our implementation, a state-of-the-art speculative exe-
cution gadget scanner that uses taint analysis and fuzzing.
Specifically, we improve Kasper’s kernel auditing perfor-
mance by modifying Kasper and the underlying kernel fuzzer
Syzkaller [70] to bound their search space within the ISVs.
The result is a drastically reduced search space (Section VIII).
Enhancing ISVs with Auditing. Perspective can further
leverage the results of kernel auditing to generate even
stricter ISVs. Specifically, after Perspective generates ISVs and
Kasper performs its gadget analysis, we leverage the results of
the analysis to exclude all identified vulnerable functions from
the ISV, further enhancing their security. While the kernel anal-
ysis is bound by the capabilities of the underlying toolchain,
Kasper and Syzkaller for our implementation, Perspective’s
approach can be leveraged for other analysis techniques as
well [73], [112], [118]. We present the security enhanced ISVs
in Section VIII.

B. Architectural Extensions

The goal of the hardware design of Perspective is to expose
the speculation view metadata to the hardware and efficiently
control speculation.

Exposing ISVs to Hardware. Perspective’s ISVs are at the
granularity of instructions, enabling Perspective to block the
speculative execution of any instruction that does not belong to
the ISV irrespective of its type. To expose ISVs to hardware,
we propose a simple design that associates a page of code in
the kernel with an ISV page through a fixed virtual address
offset, enabling fast ISV access. The offset is defined by the
OS at process creation time. An ISV page holds an entry for
each instruction at the same offset as in the code page. Each
entry is a single bit that identifies whether that instruction
belongs to the ISV. With this design Perspective only needs
to populate ISV pages on demand based on usage when a
first access to an ISV page is performed. Figure 7(a) shows
the virtual address space and how the code pages are mapped
to the ISV pages through the offset. Furthermore, Perspective
maintains a hardware structure near the processor pipeline,
called the ISV cache, that stores ISV entries. Figure 7(b) shows
the ISV cache. The ISV cache is indexed by the instruction
VA. On a hit, a response is returned to the pipeline to identify
if Perspective needs to block speculative execution. In an ISV
cache miss, the speculative execution of the instruction is
blocked, and the instruction VA combined with the offset is
sent to the TLB to locate the physical address of the ISV page.
As we will see in the evaluation, due to the small amount
of code accessed by applications during kernel execution, the
ISV cache achieves a very high hit rate of 99%. To avoid
ISV cache flushes on context switches, we tag entries with
the address space identifier (ASID) similar to other tagged
structures. Similar implementations have been proposed in
prior work [134], [160] for other purposes.

Exposing DSVs to Hardware. Our goal is to minimize hard-
ware changes in existing processors. To this end, Perspective
implements DSV based on virtual ranges on a per-context
basis inspired by upcoming secure processor extensions such
as Intel’s TDX [19]. Specifically, Perspective introduces a
data structure called the Data Spection View Metadata Table
(DSVMT), which is similar to TDX, and it is accessed in
parallel to the TLB. Perspective leverages the DSVMT during
kernel execution to identify DSV metadata. The DSVMT is
organized as a three-level tree structure supporting the three
contemporary page sizes (4KB, 2MB, 1GB). The leaf entry
corresponds to 4KB pages. Each entry defines if a given page
belongs in the DSV, and hence the DSVMT entries are only
a single bit. Perspective further maintains a small DSVMT
hardware cache located close to the processor pipeline that
is checked on access. On a miss, instead of waiting for a
refill, Perspective conservatively blocks speculation. Because
DSVMT entries are very small, Perspective enjoys very high
hit rates close to 99% as shown in Section IX-B. We believe
that a realistic adoption path is for Perspective to extend secure
architecture extensions such as TDX. We opted against storing
the DSV information in page tables because that would require
intrusive changes in how the kernel currently uses page tables
for the direct map, adding significant complexity to managing
page tables and context switching.

TABLE II
FULL-SYSTEM SIMULATION PARAMETERS.

Parameter Value
Architecture 2 out-of-order x86 cores at 2.0 GHz
Core 8-issue, out-of-order, 62 Load Queue entries, 32

Store Queue entries, 192 ROB entries, L-TAGE
branch predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32 KB, 64 B line, 4-way, 2 cycle Round Trip (RT)
latency, 1 hardware prefetcher

Private L1-D Cache 32 KB, 64 B line, 8-way, 2 cycle RT latency, 1
hardware prefetcher

Shared L2 Cache Slice: 2 MB, 64 B line, 16-way, 8 cycles RT latency
Coherence Directory-based MESI protocol
DRAM 50 ns RT latency after L2
ISV Cache 128 entries, 32 sets, 4-way; 57 bits / entry
DSV Cache 128 entries, 32 sets, 4-way; 53 bits / entry
OS Kernel Linux v5.4.49

Controlling Speculation. To control speculation, in Perspec-
tive the hardware adds a fence ahead of the instruction based
on DSV and ISV. In this way, an attacker cannot observe
side effects from speculative execution. A fenced instruction is
allowed to proceed when it reaches the Visibility Point [153]:
at the head of the ROB or when no older instructions can
squash it. On DSV and ISV misses, instructions are blocked,
and request is sent to the cache hierarchy after the instruction
reaches its VP. On a hit, DSV and ISV LRU bits are not
updated until the instruction reaches its VP.

VII. METHODOLOGY

Full-system Simulation. We model an out-of-order processor
shown in Table II using cycle-level simulation with gem5 [56].
We evaluate the following defense schemes: (i) UNSAFE is the
baseline architecture, which is not protected against transient
execution attacks; (ii) FENCE is a hardware-only defense
that delays all speculative loads until all prior branches are
resolved; (iii) PERSPECTIVE-STATIC is the FENCE scheme
augmented with the proposed Perspective hardware, running
our modified Linux kernel. PERSPECTIVE-STATIC utilizes
static ISVs; (iv) PERSPECTIVE is the same as PERSPECTIVE-
STATIC, except it uses dynamic ISVs. (v) PERSPECTIVE++
extends PERSPECTIVE with stricter, ISV++, as discussed in
Section VIII.

Benchmarks and Applications. We evaluate the perfor-
mance of Perspective on LEBench [122], a microbenchmark
suite for Linux, as well as four datacenter applications, Re-
dis [93], httpd [8] (Apache web server), nginx [121], and
memcached [67]. Each workload runs within a container and
Perspective leverages cgroups as discussed in Section VI. For
LEBench, we run the ROI for each microbenchmark, and use
the evaluation methodology of the original work [122]. For
datacenter applications, the client and the server communicate
over the loopback interface, which is less likely to bottleneck
applications on I/O and represents the worst case for Perspec-
tive. We run httpd and nginx for 40K requests using ab [51].
We run Redis for 20K requests using redis-benchmark [92] and
average over all individual tests. We run memcached for 160K
requests using memslap [161]. We measure the percentage of
time that applications spend in the OS during our experiments
by tracking userspace/kernel time in the simulator: 50% for

TABLE III
ATTACK SURFACE REDUCTION WITH PERSPECTIVE.
Config LEBench httpd nginx memcached redis

ISV-S 92% 91% 90% 91% 90%
ISV 96% 94% 94% 96% 95%

httpd, 65% for nginx, 65% for memcached, and 53% for
Redis.

VIII. SECURITY EVALUATION

As discussed in Section IV, speculative execution attacks in
the kernel can be categorized into active and passive attacks.
This taxonomy is agnostic to a specific attack variant, as any
variant such as Spectre v1, v2, BHI, Retbleed and others, can
be exploited to perform either active or passive attacks. Since
Perspective’s design is rooted in this taxonomy, not attack
variants, it can mitigate all variants.

A. Active Attacks Security Analysis

Active attacks are the most potent scenario as they are initi-
ated directly by the attacker’s kernel thread and are relatively
simple to perform. Perspective completely eliminates active
attacks. This is because Perspective’s DSVs provide a strong
security guarantee that an attacker cannot speculatively access
kernel memory that has been allocated to other contexts. As a
result, any speculative execution attack variant is blocked from
performing active attacks. We leverage the identified CVEs
in Table I to launch Proof-of-Concept (PoC) active attacks.
Perspective’s DSVs effectively mitigates all active attacks.

B. Passive Attacks Security Analysis

In passive attacks the victim process’s kernel thread specula-
tively executes kernel functions containing transient execution
gadgets to access and leak its own data. To this end, ISVs en-
able an execution context to define the set of kernel functions
that are trusted by the context. Any transmitter instructions—
whose execution could leak secrets, such as load instructions—
that belong to kernel functions outside the ISVs are blocked
from speculative execution.

Attack Surface Reduction. To assess the passive attack
surface reduction of Perspective, we measure the surface as
the number of functions that can be speculatively executed
in the Linux kernel. Table III reports the relative reduction in
the attack surface after applying ISVs to different applications.
Perspective’s personalized ISVs reduce the attack surface by at
least 90.9% across all evaluated benchmarks and applications.
Using static ISVs (ISV-S), Perspective reduces the number of
functions that can be speculatively executed to only an average
of 9% to that of Linux. With dynamic ISVs (ISV), this number
is further reduced to an average of just 4.9% of Linux. This is
because dynamic ISVs eliminate functions that static analysis
unnecessarily includes. As a result, passive transient execution
attacks of any variant are blocked within 95.1% of the kernel
functions. In summary, these results highlight the significant
reduction in the attack surface achieved by Perspective through
personalized ISVs with system call interposition.

TABLE IV
PERSPECTIVE’S MDS/PORT/CACHE GADGET REDUCTION.

Benchmark ISV-S ISV ISV++

LEBench 87% / 87% / 83% 93% / 93% / 93% 100% / 100% / 100%
httpd 84% / 84% / 78% 91% / 92% / 92% 100% / 100% / 100%
nginx 84% / 83% / 78% 91% / 91% / 91% 100% / 100% / 100%
memcached 84% / 84% / 78% 92% / 92% / 92% 100% / 100% / 100%
redis 83% / 83% / 78% 91% / 91% / 91% 100% / 100% / 100%

Search Space and Transient Execution Gadgets. Per-
spective’s ISVs reduce the number of speculative accessible
functions to 5% of the entire kernel, hence, the gadget search
space is reduced from 28K functions in Linux down to only
1.4K. To better understand the potential security gains of this
reduction, we leverage Kasper [77], a state-of-the-art transient
execution gadget scanner that uses taint analysis and fuzzing
via Syzkaller [70]. Specifically, we (a) quantify the potential
transient execution gadgets that Perspective’s ISVs eliminate,
(b) leverage the reduced search space of ISVs to speed up the
gadget search process, and (c) utilize the results of the analysis
to produce even stricter ISVs.

First, based on the results obtained from the authors of
Kasper, we calculate the number of gadgets that are blocked
from transient execution attacks with Perspective’s ISVs.
Kasper [77] identifies 1533 potential speculative execution
gadgets in the whole Linux kernel. It identifies 805 microar-
chitectural buffers (MDS), 509 port contention (Port), and
219 cache-based covert channels (Cache) potential gadgets.
Perspective blocks all transiently accessible gadgets excluded
from the ISVs which account for 78% with static ISVs (ISV-S)
and more than 91% with dynamic ISVs (ISV). Although our
threat model (Section III) does not include MDS attacks, as
they are fixed in current processors, Perspective’s ISVs still
provide significant reduction. Overall, the results demonstrate
the ability of Perspective to drastically reduce the attack
surface of the Linux kernel by reducing the accessible gadgets.

Next, we leverage the security guarantee that kernel func-
tions outside ISVs are blocked from speculative execution to
limit Kasper’s gadget scanning to only the kernel functions that
are within ISVs. Figure 8 shows the results. Perspective speeds
up Kasper’s gadget discovery rate (gadgets/hour) by 1.57× on
average. We see that the speedups are even more profound in
applications such as nginx reaching 2.23×. In summary, we
have shown that Perspective is able to speed up existing kernel
analysis techniques and potentially open up new possibilities
for other solutions that are currently not considered possible
or tractable for large OS code bases.

We further leverage the analysis of Kasper augmented with
Perspective to produce even stricter dynamic ISVs as described
in Section V-C and Section VI-A. Specifically, we use the
analysis of Kasper to remove all identified vulnerable functions
from the ISVs. The resulting ISVs (ISV++) block all identified
gadgets as shown in Table IV.

Finally, we evaluate ISV protection with practical attacks
by launching Proof-of-Concept (PoC) passive attacks using
transient execution gadgets in CVEs of Table I. Because the
transient execution gadgets in those CVEs are excluded from

httpd nginx memcached redis Average
0.0
0.5
1.0
1.5
2.0
2.5

Sp
ee

du
p

Kasper Kasper w/ Perspective

Fig. 8. Speedup of Kasper’s gadget discovery rate (gadgets/hour).

the ISVs, the attacker cannot coerce the victim to speculatively
execute them, blocking passive attacks.

IX. PERFORMANCE EVALUATION

A. Performance Results

LEBench. Figure 9 shows the latency of LEBench tests
on all schemes, including FENCE, PERSPECTIVE-STATIC,
PERSPECTIVE, PERSPECTIVE++, normalized to UNSAFE.
Among all the evaluated schemes, FENCE has the highest
average execution overhead of 47.5%. In system calls such as
select and poll, the overhead of FENCE can be as high
as 228.3%. This is because the execution spins in the kernel
repeatedly, paying the cost of mitigations. On the other hand,
PERSPECTIVE-STATIC, PERSPECTIVE, and PERSPECTIVE++
exhibit very little execution overhead in most cases, with
an average overhead of 4.1%, 3.6%, and 3.5% respectively.
Perspective schemes only experience moderate overhead in
big-fork and page-fault, where most of the overhead
originates from DSVs as new allocations are created. Overall,
Perspective shows little overhead in LEBench.
Datacenter Applications. Figure 10 shows the throughput
of datacenter applications in requests per second normalized
to UNSAFE. The UNSAFE baseline throughput is 11.5K, 18K,
55K, and 40.7K RPS for httpd, nginx, memcached, and redis
respectively. The results show that FENCE can induce sig-
nificant slowdowns, with an average overhead on throughput
of 5.7%. The key-value stores, memcached and Redis,
suffer the most due to the high cost of frequent blocking of
memory accesses. PERSPECTIVE-STATIC, PERSPECTIVE, and
PERSPECTIVE++ achieve nearly the same performance as UN-
SAFE, with an average overhead on throughput of 1.3%, 1.2%,
and 1.2% respectively. In the case of httpd, PERSPECTIVE-
STATIC performs a bit worse than PERSPECTIVE with dynamic
ISVs, due to an increased number of indirect jumps whose
targets cannot be statically analyzed and included in static
ISVs, as we discuss in Section IX-B.
Comparing to Spot Software Mitigations. We further com-
pare to software mitigations (KPTI [72] and Retpoline [139])
in Linux, which are spot mitigations only for Meltdown and
Spectre-v2. They show an average overhead of 14.5% in
LEBench and 5% on datacenter applications. Without KPTI,
the performance overhead of spot mitigations is 6.6% and
1.2% for micro and macro benchmarks respectively. Perspec-
tive provides better security than spot software mitigations and
only shows an overhead of 3.5% and 1.2% respectively.
Comparing to Hardware Mitigations. To provide a bet-
ter understanding of Perspective, we further compare it to

CS

small-R
D

med-RD
big-RD

small-W
R

med-WR
large-WR

mmap
munmap fork

big-fork
thrcreate

small-se
nd
big-send

small-re
cv
big-recv

small-S
LCT

big-SLCT

small-p
oll
big-poll

small-e
poll

big-epoll

small-P
F
big-PF

Average
0.8
1.0
1.2
1.4

La
te

nc
y

ov
er

 U
ns

af
e

1.95 3.03 1.93 2.87 1.63 3.28Fence Perspective-static Perspective Perspective++

Fig. 9. LEBench suite’s normalized latency to an unsafe baseline under different schemes.

.

httpd nginx memcached redis Average
0.8

0.9

1.0

Th
ro

ug
hp

ut
ov

er
 U

ns
af

e

Fence Perspective-static Perspective Perspective++

Fig. 10. Requests per second normalized to an unsafe baseline.

two state-of-the-art hardware-only schemes: Delay-on-Miss
(DOM) [124] and Speculative Taint Tracking (STT) [156].
They represent two design points in the spectrum between
hardware complexity and performance, with DOM being sim-
pler and slower, and STT more complex and faster.

Compared to the unsafe baseline, DOM shows an average
overhead of 23.1%, while STT shows an average overhead
of 3.7% in the microbenchmarks. The overhead profile of
both DOM and STT is similar to FENCE, where several
benchmarks like those based on select, poll, and epoll show
overheads of 204% for DOM and 26.4% for STT. On the
other hand, Perspective shows an average overhead of 3.5% on
microbenchmarks. Overall, in microbenchmarks, Perspective
is significantly faster than DOM and slightly faster than
STT. In terms of macrobenchmarks, all three configurations
show good performance, achieving normalized throughput of
98.3%, 99.6%, and 98.8% for DOM, STT, and Perspective
respectively. Overall, all three configurations show marginal
overhead in practice.

In terms of complexity, STT requires complex taint track-
ing additions to the processor pipeline, making its adoption
difficult in practice. On the other hand, DOM requires sim-
pler modifications, however its performance overhead can
be significant. Perspective represents a balanced design with
minimal hardware changes compared to DOM and STT while
achieving low overhead. We believe that Perspective achieves
its goal of attaining high performance while enabling software
to take control of transient execution in the kernel.

B. Sensitivity Analysis

Breakdown of Speculation Views. Table VI shows the
percentage of fenced instructions that were caused by Per-
spective’s DSVs and static, dynamic ISVs, and ISV++. Such
fences would represent false positives due Perspective’s imple-
mentation since we are focusing on benign workloads. Both
LEBench and applications exhibit similar profiles. The results
show that on average, the ISV-Static accounts for 20% of the
total number of fenced instructions, while the DSV accounts

for 80%. In ISV-Dynamic, the ISV percentage decreases to
18%. This is because dynamic ISVs may capture reachable
functions that static ISVs cannot. The fence rate is on average
9 and 37 fences per kilo instructions for ISVs and DSVs,
respectively. ISV++ exhibits similar characteristics.
Unknown Allocations. As discussed in Section VI-A, some
allocations beyond those handled by the page and slab alloca-
tors may be classified as unknown. Accessing memory from
unknown allocations can cause stalls in the processor pipeline.
We quantify their impact by selectively disabling blocking of
unknown accesses. On average, unknown allocations in the
kernel’s direct map are responsible for 1.5% of Perspective’s
overhead on LEBench and marginal overhead on applications.
We believe that additional engineering efforts can further
reduce this overhead.
Hardware Structures. Perspective introduces the ISV and
DSV caches. Both caches are organized as 128-entry 4-way
set associative caches and provide very high hit rates close to
99% for both microbenchmarks and applications. The reason
is that a small cache can hold the relatively small working
set of instructions and data in the kernel. Table V show
the characteristics of Perspective’s hardware structures: area,
access time, energy, and leakage power. The data correspond
to 22nm and is obtained with CACTI [53]. Although the access
time to Perspective structures is a fraction of a cycle, to be
conservative we account for 2 cycles.

TABLE V
HARDWARE STRUCTURE CHARACTERIZATION.

Configuration Area Access Time Dyn. Energy Leak. Power
DSV Cache 0.0024 mm2 114 ps 1.21 pj 0.78 mW
ISV Cache 0.0025 mm2 115 ps 1.29 pj 0.79 mW

Memory Fragmentation. Perspective utilizes separate phys-
ical pages to store objects for different cgroups. This
approach provides strong isolation, but it can lead to in-
creased memory fragmentation. We use slabtop to track the
memory utilization ratio, defined as the size of active objects
divided by the total size of objects. On average, Perspective’s
secure slab allocator incurs a minimal memory usage overhead
of 0.91%.

X. RELATED WORK

Numerous hardware-only defense mechanisms have been
proposed [47], [61], [62], [71], [80], [83], [95], [107], [109],
[123], [124], [136], [137], [146], [153], [155], [156], [159]
to defend against transient execution attacks. While hardware

TABLE VI
PERCENTAGE OF FENCED INSTRUCTIONS DUE TO ISV AND DSV.

Config LEBench httpd nginx memcached redis

ISV-S/DSV 27% / 73% 20% / 80% 15% / 85% 13% / 87% 23% / 77%
ISV/DSV 22% / 78% 12% / 88% 16% / 84% 15% / 85% 23% / 77%
ISV++/DSV 22% / 78% 13% / 87% 16% / 84% 15% / 85% 23% / 77%

defenses offer great software transparency, they lack the neces-
sary information to determine which data and execution paths
require protection. Consequently, they either conservatively
protect all speculative instructions that could leak informa-
tion [124], [146], [153], or conservatively infer what data is not
confidential [61], [156], resulting in high execution overhead
or complex hardware.

Prior work on system call interposition [2], [3], [5], [66],
[76], [81], [94], [132] has focused solely on application sand-
boxing to protect the kernel against traditional attacks such
as buffer overflows. Similarly, a body of work has focused on
architectural support for memory-based protection [63], [125],
[131], [145], [150], [151]. These works focus on traditional
attacks rather than transient execution attacks.

Kernel mitigations have primarily focused on page table
isolation to mitigate unauthorized data accesses. KPTI sep-
arates userspace and kernel page tables in order to mitigate
Meltdown-style attacks. Other software-only approaches [49],
[55], [79], [127], [152] also rely on page tables to block specu-
lation through page faults. However, these approaches require
context switches, leading to substantial overhead. Furthermore,
when access to unmapped data is required, the kernel needs
to switch to the complete mappings, voiding isolation [55].

Control flow integrity (CFI) [45], [64], [108], [113]–[115],
[129], [143], [157], [158] is a powerful technique that can
reduce the attack surface of the kernel. CFI prevents attackers
from diverting the victim’s control flow to attacker-chosen
logic. Recent works, such as SpecCFI [86], leverage CFI to
restrict speculative execution, increasing the bar for attacks.
Such techniques are orthogonal to Perspective. First, Perspec-
tive introduces DSVs to protect data accesses, which is not
the goal of SpecCFI, CET [129], and CFI in general. Second,
SpecCFI and CET would mark all kernel functions as legal,
and hence speculation would be able to reach any function
irrespective of the userspace process making the system call.
This leaves a large attack surface vulnerable. ISVs provide
tailored protection to applications, as an attacker cannot hijack
the control flow to speculatively execute a function outside
the ISVs. We demonstrate this point in Section VIII.B as
Perspective drastically reduces the attack surface of the kernel.

XI. CONCLUSION

This paper presents Perspective, a principled framework
for secure speculation in the operating system. Perspective
introduces Data Speculation Views (DSVs) and Instruction
Speculation Views (ISVs) to mitigate active and passive
attacks, respectively. DSVs define the ownership of kernel
data by a given execution context. ISVs define the set of
kernel functions that can be speculatively executed by a given
execution context. Perspective’s ISVs open up the opportuni-

ties of (i) swiftly patching gadgets in kernel functions, (ii)
reducing the surface of passive attacks, and (iii) speeding
up the kernel auditing process. Our evaluation showed that
Perspective achieves significant security improvements with
minimal performance overhead.

REFERENCES

[1] “Linux kernel stable tree,” https://git.kernel.org/pub/scm/linux/kernel/
git/stable/linux.git/tree/?h=linux-6.1.y.

[2] “OpenBSD Pledge,” https://man.openbsd.org/pledge.
[3] “OpenBSD Tame,” https://man.openbsd.org/OpenBSD-5.8/tame.2.
[4] “PROCESS MITIGATION SYSTEM CALL DISABLE POLICY

structure,” https://docs.microsoft.com/en-us/windows/win32/api/winnt/
ns-winnt-process\ mitigation\ system\ call\ disable\ policy.

[5] “Improving host security with system call policies,”
in 12th USENIX Security Symposium (USENIX Security
03). Washington, D.C.: USENIX Association, Aug. 2003.
[Online]. Available: https://www.usenix.org/conference/12th-usenix-
security-symposium/improving-host-security-system-call-policies

[6] “Vulnerability details: Cve-2018-15572,” https://www.cvedetails.com/
cve/CVE-2018-15572/, Aug 2018.

[7] “Vulnerability details: Cve-2018-15594,” https://www.cvedetails.com/
cve/CVE-2018-15594/, Aug 2018.

[8] “Apache HTTP Server Project,” https://httpd.apache.org/, 2019.
[9] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2018-12126, May 2019.
[10] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2018-12127, May 2019.
[11] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2018-12130, May 2019.
[12] “Vulnerability details: Cve-2019-15902,” https://www.cvedetails.com/

cve/CVE-2019-15902/, Sept 2019.
[13] “Vulnerability details: Cve-2019-18660,” https://www.cvedetails.com/

cve/CVE-2019-18660/, Nov 2019.
[14] “Vulnerability details: Cve-2019-19338,” https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-19338, Nov 2019.
[15] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2021-26401, Jun 2020.
[16] “Vulnerability details: Cve-2020-10766,” https://www.cvedetails.com/

cve/CVE-2020-10766/, Sept 2020.
[17] “Vulnerability details: Cve-2020-10767,” https://www.cvedetails.com/

cve/CVE-2020-10767/, Sept 2020.
[18] “Vulnerability details: Cve-2020-10768,” https://www.cvedetails.com/

cve/CVE-2020-10768/, Sept 2020.
[19] “Intel trusted domain extentions,” https://www.intel.com/content/dam/

develop/external/us/en/documents/tdx-whitepaper-v4.pdf, 2021.
[20] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2021-29154, May 2021.
[21] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2021-38300, Oct 2021.
[22] “Vulnerability details: Cve-2021-31829,” https://www.cvedetails.com/

cve/CVE-2021-31829/, May 2021.
[23] “Vulnerability details: Cve-2021-33624,” https://www.cvedetails.com/

cve/CVE-2021-33624/, Jun 2021.
[24] “Vulnerability details: Cve-2021-34556,” https://www.cvedetails.com/

cve/CVE-2021-34556/, Aug 2021.
[25] “Vulnerability details: Cve-2021-35477,” https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2021-35477, Jun 2021.
[26] “Cve-2022-0001 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

0001, Mar 2022.
[27] “Cve-2022-0002 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

0002, Mar 2022.
[28] “Cve-2022-23824 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

23824, Nov 2022.
[29] “Cve-2022-23960 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

23960, Mar 2022.
[30] “Cve-2022-29900 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

29900, Jul 2022.
[31] “Cve-2022-29901 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-

29901, Jul 2022.
[32] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-

2022-21123, Jul 2022.

[33] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-
2022-21125, Jul 2022.

[34] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-
2022-21166, Jul 2022.

[35] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-
2022-26373, Jul 2022.

[36] “Vulnerability details: Cve-2019-7308,” https://www.cvedetails.com/
cve/CVE-2019-7308/, Jul 2022.

[37] “Vulnerability details: Cve-2020-27170,” https://www.cvedetails.com/
cve/CVE-2020-27170/, Jul 2022.

[38] “Vulnerability details: Cve-2020-27171,” https://www.cvedetails.com/
cve/CVE-2020-27171/, Jul 2022.

[39] “Vulnerability details: Cve-2021-29155,” https://www.cvedetails.com/
cve/CVE-2021-29155/, Apr 2022.

[40] “Vulnerability details: Cve-2022-27223,” https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2022-27223, Mar 2022.

[41] “Cve-2022-2196 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-
2196, Jan 2023.

[42] “Cve-2022-42331 details,” https://nvd.nist.gov/vuln/detail/CVE-2022-
42331, Mar 2023.

[43] “Cve-2023-1998 details,” https://nvd.nist.gov/vuln/detail/CVE-2023-
1998, Apr 2023.

[44] “Linux kernel cves,” https://www.linuxkernelcves.com/cves/CVE-
2019-11091, Jan 2023.

[45] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 340–353. [Online].
Available: https://doi.org/10.1145/1102120.1102165

[46] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, 2020, pp. 419–434.

[47] S. Ainsworth, “Ghostminion: A strictness-ordered cache system
for spectre mitigation,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21.
New York, NY, USA: Association for Computing Machinery, 2021,
p. 592–606. [Online]. Available: https://doi.org/10.1145/3466752.
3480074

[48] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port contention for fun and profit,” IEEE Symposium on Security and
Privacy (S&P), 2019.

[49] Alexandre Chartre, “Kernel Address Space Isolation,” https://lkml.iu.
edu/hypermail/linux/kernel/1907.1/03688.html.

[50] AMD, “Software Techniques for Managing Speculation,”
https://www.amd.com/content/dam/amd/en/documents/epyc-
technical-docs/tuning-guides/software-techniques-for-managing-
speculation.pdf.

[51] Apache, “ab - Apache HTTP server benchmarking tool,” https://httpd.
apache.org/docs/2.4/programs/ab.html, 2022.

[52] AWS, “Firecracker Design,” https://github.com/firecracker-microvm/
firecracker/blob/master/docs/design.md.

[53] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration in
Innovative Off-Chip Memories,” ACM Transactions on Architecture
and Code Optimization, vol. 14, no. 2, pp. 14:1–14:25, Jun. 2017.

[54] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch History Injection: On the Effectiveness of Hardware
Mitigations Against Cross-Privilege Spectre-v2 Attacks,” in
USENIX Security, Aug. 2022, intel Bounty Reward. [Online].
Available: Paper=http://download.vusec.net/papers/bhi-spectre-
bhb sec22.pdfWeb=https://www.vusec.net/projects/bhi-spectre-
bhbCode=https://github.com/vusec/bhi-spectre-bhb

[55] J. Behrens, A. Cao, C. Skeggs, A. Belay, M. F. Kaashoek, and
N. Zeldovich, “Efficiently mitigating transient execution attacks using
the unmapped speculation contract,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 2020, pp. 1139–1154. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/behrens

[56] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, 2011.

[57] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[58] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 249–266. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/canella

[59] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 769–784. [Online].
Available: https://doi.org/10.1145/3319535.3363219

[60] C. Carruth, “Speculative Load Hardening,” https://llvm.org/docs/
SpeculativeLoadHardening.html, 2018.

[61] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, Speculative Privacy
Tracking (SPT): Leaking Information From Speculative Execution
Without Compromising Privacy. New York, NY, USA: Association
for Computing Machinery, 2021, p. 607–622. [Online]. Available:
https://doi.org/10.1145/3466752.3480068

[62] S. Deng, W. Xiong, and J. Szefer, “Secure TLBs,” in Proc. of the
ACM/IEEE International Symposium on Computer Architecture (ISCA).
IEEE, 2019.

[63] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” SIGARCH Comput.
Archit. News, vol. 43, no. 1, p. 487–502, mar 2015. [Online].
Available: https://doi.org/10.1145/2786763.2694383

[64] R. Ding, C. Qian, C. Song, W. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in Proceedings of the
26th USENIX Conference on Security Symposium, ser. SEC’17. USA:
USENIX Association, 2017, p. 131–148.

[65] Docker, “Seccomp security profiles for Docker,” https://docs.docker.
com/engine/security/seccomp/.

[66] J. Edge, “A seccomp overview,” https://lwn.net/Articles/656307/, Sep.
2015.

[67] B. Fitzpatrick, “Distributed caching with memcached,” Linux Journal,
vol. 2004, no. 124, 2004.

[68] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida,
“Speculative probing: Hacking blind in the spectre era,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1871–1885.

[69] Google, “gVisor: Container Runtime Sandbox,” https://github.com/
google/gvisor/blob/master/runsc/boot/filter/config.go.

[70] Google, “Syzkaller - Kernel Fuzzer,” https://github.com/google/
syzkaller.

[71] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in Proc. of the USENIX Security Symposium
(USENIX), 2017.

[72] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Man-
gard, “Kaslr is dead: Long live kaslr,” 06 2017, pp. 161–176.

[73] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,
“Spectector: Principled detection of speculative information flows,”
2019.

[74] Intel, “Indirect branch restricted speculation,”
https://www.intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/technical-documentation/indirect-branch-restricted-
speculation.html.

[75] Intel, “Refined Speculative Execution Terminology,” https://www.
intel.com/content/www/us/en/developer/articles/technical/software-
security-guidance/best-practices/refined-speculative-execution-
terminology.html.

[76] K. Jain and R. C. Sekar, “User-level infrastructure for system call
interposition: A platform for intrusion detection and confinement,” in
Network and Distributed System Security Symposium, 2000.

[77] B. Johannesmeyer, J. Koschel, K. Razavi, H. Bos, and C. Giuffrida,
“Kasper: Scanning for Generalized Transient Execution Gadgets in the
Linux Kernel,” in NDSS, Apr. 2022.

[78] Julien Tinnes, “Introducing Chrome’s next-generation Linux
sandbox,” https://blog.cr0.org/2012/09/introducing-chromes-next-
generation.html, Sep. 2012.

[79] Junaid Shahid, “Address Space Isolation for KVM,” https://lore.kernel.
org/lkml/20220223052223.1202152-1-junaids@google.com/.

[80] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation,” in Proceedings of the 56th
ACM/IEEE Design Automation Conference (DAC’19), 2019.

[81] T. Kim and N. Zeldovich, “Practical and effective sandboxing for
non-root users,” in 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX Association, Jun. 2013,
pp. 139–144. [Online]. Available: https://www.usenix.org/conference/
atc13/technical-sessions/presentation/kim

[82] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), 2014, pp. 361–372.

[83] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative
execution processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Los Alamitos, CA, USA:
IEEE Computer Society, oct 2018, pp. 974–987. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MICRO.2018.00083

[84] O. Kirzner and A. Morrison, “An analysis of speculative type
confusion vulnerabilities in the wild,” in 30th USENIX Security
Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 2399–2416. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/kirzner

[85] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in IEEE Symposium on Security and
Privacy (S&P), 2019.

[86] E. M. Koruyeh, S. Haji Amin Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh, “Speccfi: Mitigating spectre attacks using cfi
informed speculation,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 39–53.

[87] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in 12th USENIX Workshop on Offensive Technologies, WOOT 2018,
Baltimore, MD, USA, August 13-14, 2018. USENIX Association,
2018.

[88] Kubernetes Documentation, “Configure a Security Context for a Pod
or Container,” https://kubernetes.io/docs/tasks/configure-pod-container/
security-context/, Jul. 2019.

[89] H.-C. Kuo, J. Chen, S. Mohan, and T. Xu, “Set the Configuration
for the Heart of the OS: On the Practicality of Operating System
Kernel Debloating,” in Proceedings of the 2020 ACM SIGMETRICS
Conference (SIGMETRICS’20), Jun. 2020.

[90] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ziegler, W. Schröder-Preikschat, D. Lohmann, and R. Kapitza, “At-
tack surface metrics and automated compile-time os kernel tailoring,”
in Network and Distributed System Security Symposium, 2013.

[91] A. B. Kvalsvik, P. Aimoniotis, S. Kaxiras, and M. Själander,
“Doppelganger loads: A safe, complexity-effective optimization for
secure speculation schemes,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3579371.3589088

[92] R. Labs, “Redis-Benchmark,” https://redis.io/topics/benchmarks, 2022.
[93] R. Labs, “Redis In-Memory Data Structure,” https://redis.io, 2022.
[94] B. Li, J. Li, T. Wo, C. Hu, and L. Zhong, “A vmm-based system call

interposition framework for program monitoring,” in 2010 IEEE 16th
International Conference on Parallel and Distributed Systems, 2010,
pp. 706–711.

[95] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Ex-
ecution Against Spectre Attacks,” in International Symposium on High
Performance Computer Architecture, 2019.

[96] Linux, “Kernel Speculation Defenses,” https://www.kernel.org/doc/
Documentation/speculation.txt.

[97] Linux, “Linux Memory Management - Complete virtual memory map,”
https://docs.kernel.org/arch/x86/x86 64/mm.html.

[98] Linux, “slab common.c - Linux suource code,” https://elixir.bootlin.
com/linux/v6.7.5/source/mm/slab common.c#L809.

[99] Linux, “slabinfo(5) - Linux manual page,” https://man7.org/linux/man-
pages/man5/slabinfo.5.html.

[100] Linux, “slub.c - Linux suource code,” https://elixir.bootlin.com/linux/
v6.7.5/source/mm/slub.c.

[101] Linux, “The Linux Core Scheduling Documentation,”
https://www.kernel.org/doc/Documentation/admin-guide/hw-
vuln/core-scheduling.rst.

[102] Linux, “The Linux Kernel Documentation,” https://docs.kernel.org/
admin-guide/hw-vuln/l1d flush.html.

[103] Linux, “Control Group v2,” https://docs.kernel.org/admin-guide/
cgroup-v2.html, 2015.

[104] M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 643–660. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/lipp

[105] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown:
Reading kernel memory from user space,” in USENIX Security’18,
2018.

[106] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE Symposium on Security and
Privacy (S&P), 2015.

[107] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proc. of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[108] LLVM, “Clang Documentation on Control Flow Integrity,” https://
clang.llvm.org/docs/ControlFlowIntegrity.html.

[109] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient Non-Observability,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1397–1414. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/loughlin

[110] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018. ACM, 2018, pp. 2109–
2122.

[111] Mesos, “Linux Seccomp Support in Mesos Containerizer,” http://mesos.
apache.org/documentation/latest/isolators/linux-seccomp/.

[112] N. Mosier, H. Lachnitt, H. Nemati, and C. Trippel, “Axiomatic
hardware-software contracts for security,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, ser. ISCA
’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 72–86. [Online]. Available: https://doi.org/10.1145/3470496.
3527412

[113] B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 577–587. [Online].
Available: https://doi.org/10.1145/2594291.2594295

[114] B. Niu and G. Tan, “Modular control-flow integrity,” SIGPLAN
Not., vol. 49, no. 6, p. 577–587, jun 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594295

[115] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 914–926. [Online]. Available:
https://doi.org/10.1145/2810103.2813644

[116] P. Lawrence, “Seccomp filter in Android O,” https://android-
developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html,
Jul. 2017.

[117] A. Pavlos, K. B. Amund, C. Xiaoyue, S. Magnus, and K. Stefanos,
“Recon: Efficient detection, management, and use of non-speculative
information leakage,” in MICRO-56: 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO ’23, 2023.

[118] Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei, “Spectaint:
Speculative taint analysis for discovering spectre gadgets,” Proceedings
2021 Network and Distributed System Security Symposium, 2021.

[119] radareorg, “Libre Reversing Framework for Unix Geeks,” https://github.
com/radareorg/radare2, 2023.

[120] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “Pacman:
Attacking arm pointer authentication with speculative execution,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 685–698. [Online]. Available:
https://doi.org/10.1145/3470496.3527429

[121] W. Reese, “Nginx: The high-performance web server and reverse
proxy,” Linux J., 2008.

[122] X. J. Ren, K. Rodrigues, L. Chen, C. Vega, M. Stumm, and D. Yuan,
“An analysis of performance evolution of linux’s core operations,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles, ser. SOSP ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 554–569. [Online]. Available:
https://doi.org/10.1145/3341301.3359640

[123] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An “Undo” Approach
to Safe Speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), 2019.

[124] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient Invisible Speculative Execution Through Selective Delay and
Value Prediction,” in Proceedings of the 46th International Symposium
on Computer Architecture (ISCA’19), 2019.

[125] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical Byte-Granular Memory Blacklisting
Using Califorms,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-52), 2019.

[126] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 753–768.

[127] M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and
D. Gruss, “Context: Leakage-free transient execution,” CoRR, vol.
abs/1905.09100, 2019. [Online]. Available: http://arxiv.org/abs/1905.
09100

[128] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “A new
side-channel vulnerability on modern computers by exploiting electro-
magnetic emanations from the power management unit,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 123–138.

[129] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of
processor instruction set architecture for enforcing control-flow
integrity,” in Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy,
ser. HASP ’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3337167.
3337175

[130] Singularity, “Security Options in Singularity,” https://sylabs.io/guides/
3.0/user-guide/security\ options.html.

[131] K. Sinha and S. Sethumadhavan, “Practical Memory Safety with
REST,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture (ISCA’18), 2018.

[132] D. Skarlatos, Q. Chen, J. Chen, T. Xu, and J. Torrellas, “Draco:
Architectural and Operating System Support for System Call Security,”
in Proceedings of the 53rd IEEE/ACM International Symposium on
Microarchitecture (MICRO-53), October 2020.

[133] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “Microscope: Enabling microarchitectural replay attacks,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19, 2019.

[134] D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, and J. Tor-
rellas., “Jamais Vu: Thwarting Microarchitectural Replay Attacks.” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[135] SUSE, “Security hardening: Use of ebpf by un-
privileged users has been disabled by default,”
https://www.suse.com/support/kb/doc/?id=000020545.

[136] M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in Pro-
ceedings of the 24th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’19),
2019.

[137] D. Townley and D. Ponomarev, “Smt-cop: Defeating side-channel at-
tacks on execution units in smt processors,” in Proc. of the International

Conference on Parallel Architectures and Compilation Techniques
(PACT), 2019.

[138] C. Trippel, D. Lustig, and M. Martonosi, “Meltdownprime
and spectreprime: Automatically-synthesized attacks exploiting
invalidation-based coherence protocols,” CoRR, vol. abs/1802.03802,
2018. [Online]. Available: http://arxiv.org/abs/1802.03802

[139] P. Turner, “Retpoline: a Software Construct for Preventing Branch-
target-injection,” https://support.google.com/faqs/answer/7625886,
2018.

[140] Ubuntu, “LXD,” https://help.ubuntu.com/lts/serverguide/lxd.html#lxd-
seccomp.

[141] Ubuntu, “Microarchitectural Data Sampling (MDS),” https://wiki.
ubuntu.com/SecurityTeam/KnowledgeBase/MDS.

[142] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution,” in USENIX Security’18, 2008.

[143] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 934–
953.

[144] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[145] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“CODOMs: Protecting Software with Code-Centric Memory Do-
mains,” in Proceeding of the 41st Annual International Symposium on
Computer Architecture (ISCA’14), 2014.

[146] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 572–586. [Online].
Available: https://doi.org/10.1145/3352460.3358306

[147] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom,
“Foreshadow-NG: Breaking the virtual memory abstraction with tran-
sient out-of-order execution,” Technical report, 2018.

[148] J. Wikner and K. Razavi, “Retbleed: Arbitrary speculative code exe-
cution with return instructions,” in 31th USENIX Security Symposium
(USENIX Security 22). USENIX Association, Aug. 2022.

[149] J. Wikner and K. Razavi, “Retbleed: Arbitrary Speculative Code
Execution with Return Instructions,” in USENIX Security, Aug. 2022,
intel Bounty Reward, CSAW Europe finalist. [Online]. Avail-
able: Paper=https://comsec.ethz.ch/wp-content/files/retbleed sec22.
pdfURL=https://comsec.ethz.ch/research/microarch/retbleed

[150] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory
protection,” in Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS X. New York, NY, USA: Association
for Computing Machinery, 2002, p. 304–316. [Online]. Available:
https://doi.org/10.1145/605397.605429

[151] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI Capability Model: Revisiting RISC in an Age of Risk,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecture (ISCA’14), 2014.

[152] H. Xia, D. Zhang, W. Liu, I. Haller, B. Sherwin, and D. Chisnall, “A
secret-free hypervisor: Rethinking isolation in the age of speculative
vulnerabilities,” in 2022 IEEE Symposium on Security and Privacy
(SP), 2022, pp. 370–385.

[153] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in
the cache hierarchy,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[154] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low noise,
L3 cache side-channel attack,” in USENIX Security’14, 2014.

[155] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 707–720.

[156] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative taint tracking (stt): A comprehensive protection for specu-
latively accessed data,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52, 2019,
p. 954–968.

[157] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in 2013 IEEE Symposium on Security
and Privacy, 2013, pp. 559–573.

[158] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in
Proceedings of the 22nd USENIX Conference on Security, ser. SEC’13.
USA: USENIX Association, 2013, p. 337–352.

[159] Z. N. Zhao, H. Ji, A. Morrison, D. Marinov, and J. Torrellas, “Pinned
loads: Taming speculative loads in secure processors,” in Proceedings
of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’22).
Association for Computing Machinery, 2022.

[160] Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison,
D. Marinov, and J. Torrellas, “Speculation invariance (invarspec):
Faster safe execution through program analysis,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2020, pp. 1138–1152.

[161] M. Zhuang and B. Aker, “memaslap: Load testing and benchmarking
a server,” http://docs.libmemcached.org/bin/memaslap.html, 2012.

